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Özetçe —Bu çalışma otizmli çocuklar için fizyolojik sinyallere
dayalı bir stres tespit yaklaşımını konu alır. Bu yaklaşımın otizmli
çocuklar için sosyal ve yardımcı robotlar kullanılarak geliştirilen
müdahale/terapi yöntemlerinde kullanılması hedeflenmektedir.
EMBOA projesi kapsamında çeşitli ülkelerde otizmli çocuklardan
bir robot etkileşim oyunu esnasında E4 akıllı bileklikle toplanan
EDA (Elektrodermal Aktivite) ve BVP (Kan Hacmi Nabzı)
sinyalleri analiz edilmiştir. EDA sinyalinden elde edilen tepe sayısı
ve ortalama genlik değerleri önceki çalışmalarda sunulan alt sınır
değerleri baz alınarak işlenmiş ve çocuklardaki stresin tespiti için
kullanılmıştır. Ayrıca BVP sinyalinden elde edilen düşük frekans
(LF) ve yüksek frekans (HF) değerleri kullanılarak tespit edilen
stres değerleri ile de karşılaştırma yapılmıştır.

Anahtar Kelimeler—fizyolojik sinyaller, çocuk-robot etkileşimi,
otizm, stres.

Abstract—This paper proposes a physiological signal-based
stress detection approach for children with autism spectrum
disorder (ASD) to be used in social and assistive robot inter-
vention. Electrodermal activity (EDA) and blood volume pulse
(BVP) signals are collected with an E4 smart wristband from
children with ASD in different countries. The peak count and
signal amplitude features are derived from EDA signal and used
in order to detect the stress of children based on the previously
provided reference baselines. Furthermore, a comparison has
been made with the stress values determined using low frequency
(LF) and high frequency (HF) values extracted from BVP signal.

Keywords—physiological signals, child-robot interaction,
autism, stress.

I. INTRODUCTION

This study is a part of the EMBOA project that aims
to combine affective computing technologies with the social

robot intervention for children with Autism Spectrum Disorder
(ASD). The emotional state, motivation, and stress of child-
ren with ASD are analyzed via different modalities during
their interaction with the Kaspar robot. This study focuses
on a stress detection system using the physiological signals
combined with video recordings of children with ASD during
robot-based intervention. A comprehensive review of stress
detection approaches based on physiological data has been
presented in [1]. Skin conductance (SC), skin temperature
(ST), electrocardiogram (ECG), blood volume pulse (BVP),
and Electroencephalogram (EEG), as well as speech, eye
activity, and body posture/movements, have previously been
used to detect stress [1], [2]. Stress detection in people with
ASD has also been a hot research topic recently [3], [4].Heart
rate variability (HRV) based stress markers in children with
Asperger syndrome has previously been investigated that LF
power increases and HF power decreases in stressed situations
compared to the non-stress baseline [5]. Galvanic Skin Res-
ponse (GSR) or Electrodermal activity (EDA) has also been
used to detect stress levels by measuring skin conductance [6].
The instantaneous peak rate and amplitude of EDA signal has
been shown to carry crucial information about stress levels
and stress has been detected with an accuracy of 82.8% [7].
Moments of stress have been detected with 84% accuracy
based on features extracted from the EDA signal combined
with ST [8]. EDA has also been used to measure the emotional
states of children [9]. The emotional state of a child has
been identified with 68% mean global accuracy for Logistic
Regression and Support Vector Machine and 63% for Decision
Tree [9]. Furthermore, combination of EDA and heart rate
(HR) has also been used to classify stress using various
machine learning methods [10].

This study presents the preliminary results on the stress of
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children with ASD during the interaction studies with Kaspar.
29 children aged between 2-12 years old from 4 countries
attended Kaspar robot-based intervention sessions, and their
physiological, audio, gaze, and facial data were recorded. The
study focuses exclusively on the physiological data. In this
study, an Empatica E4 wristband is used to record the physiolo-
gical signals of children with ASD during their interaction with
Kaspar. The EDA and BVP signals are used for stress detection
in the study. The previously provided reference baselines [5]
for LF and HF features derived from BVP data for children
with ASD are used to detect the stress of children. The peak
count and signal amplitude features are derived from EDA data
and used to detect the stress of children based on the previously
provided reference baselines, presented in the literature [11]–
[13]. The extracted features are also evaluated individually for
each child based on their individual statistics computed from
their overall session metrics.

II. EMBOA PROJECT

This project aims to find a new approach to create an
affective loop in robot-based intervention for children with
ASD to improve the intervention gain regarding emotional
intelligence building. In order to explore available technologies
and practices serving this purpose, a set of interaction scenarios
were implemented with the Kaspar robot.

Each interaction scenario was based on the principle of
turn-taking, imitation, and role changing requiring basic lan-
guage understanding and verbal skills about emotions, ani-
mals, and body parts. Kaspar used basic sentences with some
behavioral cues to guide the children with positive, neutral,
or negative feedback throughout the interaction. The therapist
determined the interaction flow and adapted it with respect to
the children’s profile.

During the interaction studies, multi-modal interaction data
were collected to evaluate and analyze the proposed inter-
vention scheme. The collected data were composed of: (1)
Physiological signals, captured by E4 wristband; (2) Eye gaze
movements, duration, and fixation data, captured by Gazepoint
Eye Tracker; (3) Audio recordings, captured by H4n Pro sound
system; (4) Video recordings, captured by 2 video cameras, one
placed above the robot’s head to capture the facial expressions
of children and the other placed on the right side of the
robot to capture the whole interaction session; (5) Children’s
demographic profile and diagnostic history.

The interaction studies were conducted in 4 collaborating
countries: Turkey, North Macedonia (MAAP), United King-
dom (UH), and Poland (GUT). A total of 29 children (25M,
4F) diagnosed with ASD participated in the studies. The age
of children ranged from 2 to 12 years old, and the children
had a moderate or high level of language understanding and
verbal skills. The interaction study was conducted at least once
with each child and repeated in multiple sessions based on
the therapist’s opinion (2 to 11 sessions). The ethical board
approved the interaction studies of the Gdansk University of
Technology (Poland). In addition, the parents of the children
were informed about the experimental procedure, and they
signed written consent.

III. METHODOLOGY

The Empatica E4 wearable device collected children’s
BVP, ST, and EDA during the interaction with Kaspar. BVP
(64 Hz), EDA (4 Hz), and ST (4 Hz) are measured by
photoplethysmogram, electrodermal activity, and infrared ther-
mopile. The data collection procedure included feature ext-
raction, usability analysis, and baseline comparison. HeartPy
Python Heart Rate Analysis Toolkit extracted the time-domain
features SDNN, PNN50, RMSSD, HR, and frequency domain
characteristics LF and HF from raw BVP data. The reference
ranges used to assess the signal’s usability are taken from the
literature [5], [14]–[18]. The features for all signals were rated
according to their range.

Stress detection in children was based on the LF and HF
values of the usable BVP signal, and peak count and average
amplitude of EDA signal. The reference LF and HF values
for children with ASD were previously provided in [5]. It
had been demonstrated that LF power increased while HF
power decreased in stressful settings. Thus, the previously
reported mean values for LF (M = 2243 ms2), and HF (M =
3127ms2) have been used as a baseline for stress detection. If
the calculated LF value was greater and HF was less than the
reference, the child was labeled as stressed.

The raw EDA signal were processed via MIT EDA exp-
lorer tool [19] and cvxEDA library [20]. Peak counts, signal
amplitudes, Area Under the Curve (AUC), skin conductance
response (SCR) width, decay time, rise time features were
extracted from the signal based on the default parameter
provided by the toolkits (threshold: 0.02, offset: 1, rise time:
4, and decay time: 4). For the stress detection from the
EDA signal, average peak counts (also known as “SCRs")
and amplitude values were used. Previous studies indicated
that the average number of peaks in the EDA signal is 1-
3 per minute‘for adults with typical development [13], but it
increased to 20-25 peaks/minute in case of high arousal in the
emotional state [12]. Due to lack of studies in the literature
on the physiological statistics of children, especially children
with autism, the average number of peaks computed for each
children based on their overall sessions statistics were used
as baseline in this study. On the other hand, the resting mean
amplitude has been reported as 0.66±0.13 µS for children with
ASD for the average amplitude baseline [11]. Therefore this
value was used as the ASD baseline in this study.

The video recordings were also combined with physiologi-
cal characteristics to corroborate the BVP and EDA findings.
Open source toolkit OpenFace [21] was utilized to identify
children’s facial expressions and infer their emotional status
throughout their engagement with Kaspar. OpenFacecomputed
the affective state features and provided data on face action
units (AUs), the modular components of emotional expressi-
ons. OpenFaceprovided the binary presence information for
18 AUs for each video frame. They were then analyzed and
turned into emotional labels using FACS principles defined
by [22] e.g. if both AU06 and AU12 was present in a frame,
then it was labeled as “happy". And the frame was labeled as
“neutral" if it lacked an emotional label. After the annotation
procedure was complete, the number of occurrences of the
emotional labels within a specified time interval was calculated
and sorted to identify the dominating emotion. Due to their
frequency, the number of neutral frames was eliminated from
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the analysis. Calculated affective labels were employed to
determine children’s emotional states during interactions.

IV. EXPERIMENTAL RESULTS

The usability analysis study was conducted for all the
data collected within the project partnership, and the usable
physiological signals labeled were pre-processed, and average
levels of LF and HF extracted from the BVP signal, as well
as the average peak count and amplitude extracted from EDA
signal were computed for each child. Each interaction session
was analyzed in detail in 2-3 minutes intervals and validated
with emotional labels.

In this study, we present a case study for the physiological
analysis performed for a 3-year-10-month-old boy, coded as
MAAP-C07. MAAP-C07 had 7 sessions with Kaspar, the ave-
rage LF and HF values, peak counts and average amplitude for
all the sessions were presented in Fig 1a and 1b, respectively.
The results showed while LF and HF values agreed that he
was not stressed in his 4th and the last session with Kaspar
based on the baseline and the overall average of his sessions.
But the features extracted from EDA signal did not supported
this hypothesis, even though the peak count were lower than
the baseline, it was higher than his individual average, and the
amplitude was also higher than the baseline and his average,
indicating a high arousal in the signal.

In order to examine the inconsistency between the features
extracted from BVP and EDA signals, MAAP-C07’s 4th
session was analyzed based on the 2-minutes time intervals.
The results are displayed in Fig 2a and 2b. When the results
were evaluated based on the ASD baseline (drawn in red)
provided in the literature, they showed that LF-HF values
agreed with the amplitude values and they indicated stress
for the 4-6 minutes intervals. However, when the results were
assessed based on MAAP-C07’s own average (drawn in gray),
the results showed that LF and HF values agreed on the
stress of the child for the first 6 minutes of the interaction.
Combined with the peak count and average amplitude values
for the intervals, the results indicated that all the features
agreed on the stress of MAAP-C07 for the 2-4 mins intervals
(shown with “**" on Fig 2a and 2b). The results were also
validated with the dominant emotion labels extracted for the
determined time intervals. The detailed session statistics with
the interval lengths in minutes, average LF, HF, peak count
and amplitude values for the corresponding intervals, and the
dominant emotion computed by the number of occurrence in
the given time interval were presented in TABLE I for the 4th
session. The selected threshold values for the evaluation of the
physiological signals were MAAP-C07’s individual averages
computed from his overall session statistics. Additionally, the
dominant emotion for his entire sessions were found out as
“sad". The results extracted from all the modalities point out
that MAAP-C07 was stressed between the 2-4 minutes of his
interaction based on his average session statistics.

V. CONCLUSION

This study proposes a stress detection approach for children
with ASD based on physiological data. The study focuses
exclusively on the physiological data collected from children
using an Empatica E4 wristband during their interaction with
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Fig 1: Session statistics for MAAP-C07

TABLE I: 4th Session Statistics for MAAP-C07

Interval LF HF Peaks Amp Emotion

0-2* 2565.34 3691.96 16 0.7127 sad
2-4** 2912.78 3565.82 13 0.9349 sad
4-6* 2439.87 2852.65 8 0.8198 happy
6-9 980.68 2036.96 8 0.8049 happy

Baseline 2243.00 3127.00 25 0.6600 -
Threshold 1783.05 4062.36 10 0.7355 sad

the robot Kaspar in different countries as a part of EMBOA
project. The features of BVP (LF and HF) and features of EDA
(peak count and amplitude) signals of children are used for
stress detection in the study. The previously provided reference
baselines are used for LF and HF features derived from BVP,
and peak count and signal amplitude features derived from
EDA data to detect the stress of children.This study will be
a step towards affective social robots for the assistance of
children with ASD. As a future work, the other modalities
such as gaze and audio will be integrated to the study.
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Fig 2: 4th session statistics: (*) LF and HF agree on stress
detection, (**) All features agree on stress detection
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